HBase原理

HBase是什么

HBASE是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBASE技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBASE的目标是存储并处理大型的数据,更具体来说是仅需使用普通的硬件配置,就能够处理由成千上万的行和列所组成的大型数据。

HBASE是Google Bigtable的开源实现,但是也有很多不同之处。比如:Google Bigtable使用GFS作为其文件存储系统,HBASE利用Hadoop HDFS作为其文件存储系统;Google运行MAPREDUCE来处理Bigtable中的海量数据,HBASE同样利用Hadoop MapReduce来处理HBASE中的海量数据;Google Bigtable利用Chubby作为协同服务,HBASE利用Zookeeper作为协同服务。

与传统数据库的对比

1、传统数据库遇到的问题:

  1)数据量很大的时候无法存储;   2)没有很好的备份机制;   3)数据达到一定数量开始缓慢,很大的话基本无法支撑;

2、HBASE优势:

  1)线性扩展,随着数据量增多可以通过节点扩展进行支撑;   2)数据存储在hdfs上,备份机制健全;   3)通过zookeeper协调查找数据,访问速度快。

HBase集群中的角色

一个或者多个主节点,Hmaster;

多个从节点,HregionServer;

HBase依赖项,zookeeper;

HBase数据模型

在这里插入图片描述

HBase的存储机制

  HBase是一个面向列的数据库,在表中它由行排序。表模式定义只能列族,也就是键值对。一个表有多个列族以及每一个列族可以有任意数量的列。后续列的值连续存储在磁盘上。表中的每个单元格值都具有时间戳。总之,在一个HBase:

表是行的集合。

行是列族的集合。

列族是列的集合。

列是键值对的集合。

这里的列式存储或者说面向列,其实说的是列族存储,HBase是根据列族来存储数据的。列族下面可以有非常多的列,列族在创建表的时候就必须指定。

HBase 和 RDBMS的比较

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Row Key 行键

与nosql数据库一样,row key是用来表示唯一一行记录的主键,HBase的数据时按照RowKey的字典顺序进行全局排序的,所有的查询都只能依赖于这一个排序维度。访问HBASE table中的行,只有三种方式:

通过单个row key访问;

通过row key的range(正则)

全表扫描

Row key 行键(Row key)可以是任意字符串(最大长度是64KB,实际应用中长度一般为10-1000bytes),在HBASE内部,row key保存为字节数组。存储时,数据按照Row key的字典序(byte order)排序存储。设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)

Columns Family 列族

列簇:HBASE表中的每个列,都归属于某个列族。列族是表的schema的一部分(而列不是),必须在使用表之前定义。列名都以列族作为前缀。例如courses:history,courses:math 都属于courses这个列族。

Cell

由{row key,columnFamily,version} 唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存储。

Time Stamp 时间戳

HBASE中通过rowkey和columns确定的为一个存储单元称为cell。每个cell都保存着同一份数据的多个版本。版本通过时间戳来索引。时间戳的类型是64位整型。时间戳可以由HBASE(在数据写入时自动)赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显示赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。

为了避免数据存在过多版本造成的管理(包括存储和索引)负担,HBASE提供了两种数据版本回收方式。一是保存数据的最后n个版本,而是保存最近一段时间内的版本(比如最近7天)。用户可以针对每个列族进行设置。

HBase系统架构体系

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述